

MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

25 February 2011

Dennis Creech Jacobs Engineering

Agenda

- Advanced Concepts Office (ACO) overview
- Earth-To-Orbit Team / Design Flow
- Modeling concepts in INTegrated ROcket Sizing (INTROS)
- Analyzing trajectory and performance
- Structural analysis
- Model wrap-up
- Typical sensitivities

Advanced Concepts Office

We Are An Office Specializing In Pre-Phase A & Phase A Concept Definition

In-Space

Earth-to-Orbit

ACO Earth-to-Orbit Team

- High level concept performance
- Quick turnaround with high relative degree of accuracy
- Extremely useful for decision makers
 - Identify potential
 - Eliminate poor performers
 - Data input to cost and risk evaluations
 - Sensitivities to mitigate poor concepts and enhance others

Recent activity

- Highly integrated in Agency/MSFC Heavy Lift Vehicle evaluations
 - Exploration Systems Architecture Study (ESAS)
 - Constellation
 - Review of U.S. Human Spaceflight Plans (Augustine Commission)
 - Heavy Lift Launch Vehicle Study (HLLV)
 - Heavy Lift Propulsion Technology (HLPT)
 - Human Exploration Framework Team (HEFT)
 - Space Launch System (SLS)

Earth To Orbit Design Flow

Processes can be adjusted if necessary

Integrated Rocket Sizing (INTROS)

- Developed at MSFC
- Written in Visual Basic for Applications
- Approx. 600 subroutines and user defined functions
- Robust Mass Estimating Relationship (MER) database
- Utilizes basic spreadsheet inputs
- Establishes
 - Launch vehicle concept design
 - Stage sizing

Facilitates

- Integration of exterior analytical efforts
 - Structures, trajectories, element engineering
- Vehicle architecture studies
- Technology and system trades
- Parameter sensitivities

Building INTROS Model

Typically begin with established vehicle file(s)

- Top-level vehicle layout
 - Inline, number of stages, crew or cargo, boosters
- Body Geometry
 - Identify primary (load bearing) structures
 - Initially size propellant tanks

Propulsion System

- Engine type and arrangement
- Define: mixture ratio, ullage, propellant properties
- Evaluate fit and clearances

Equipment selections and routine

- Select items to be included in stage design
- Routine is run that populates a mass accounting sheet

INTROS Mass Accounting

Primary Structures

- Interstage, intertank, skirts, tanks
- Thrust/attach structure

Secondary Structures

- Closeout, fairings
- Baffles (anti slosh/vortex)
- Access tunnels

Separation Systems

Stage-to-stage, fairing

Thermal Systems

- Closeout, thermal curtains, cork
- Tank insulation
- Equipment cooling

INTROS Mass Accounting

Main Propulsion System

- Engines
- Engine installation
- Feed Systems
- Pressurization Systems
- Pneumatic Systems
- Thrust Vector Control
- Upperstage Considerations
 - Repressurization
 - He bottles/lines
 - Restart equipment

Shuttle MPS

INTROS Mass Accounting

Power – Electrical

- Battery system
 - Cells
 - Conversion & distribution
 - Circuitry

Power – Hydraulic

- Hydraulic Auxiliary Power Units
- Fuel storage & plumbing
- Cooling system

Avionics

- Data mgmt/handling
- Thrust Vector Control electronics
- Instrumentation
- Range safety
- Guidance Navigation & Control

Mass Accounting Wrap-Ups

Stage Dry Mass with Growth

- Stage Burnout Mass
 - Residuals
 - Reserves
 - In-flight losses
- Stage GLOM
 - Propellant
 - Purge helium
- Vehicle GLOM
 - Payload
 - Shroud
 - Provisions
 - Launch Abort System
 - Boosters

STAGE DRY MASS W/O GROWTH Dry mass grow th allow ance		
STAGE DRY MASS W/GROWTH (m dr	v)	_
Residuals:	<u>''</u>	
Main propellant (liquid residual)		
Prop Tank Pressurization Gases:		
Liquid Oxygen tank		
Liquid Hydrogen tank		
Subsystems		_
Reserves:		
Main propellant (FPR)		
Fuel bias		
APU reactants		
Inflight Fluid Losses:		
APU reactants		
STAGE BURNOUT MASS (mbo)		
Main Ascent Propellant:		
Liquid Oxygen		
Main Oxidizer Tank		
Oxidizer Feedlines	•	
Liquid Hydrogen		
Main Fuel Tank		
Fuel Feedlines	1	
Engine purge helium		
STAGE GROSS LIFTOFF MASS (mgr	oss)	
Stage start propellant		
STAGE PRELAUNCH GROSS MASS (I	nplgross)	
Vehicle Stackup:		
Payload		
Payload shroud		
Payload provisions (external PL)		
Launch escape system (LES)		
Upper stage(s), gross		
Strap-on(s), gross liftoff		
Prelaunch gross		
Less strap-on start consumption		
Less stage start propellant		
VEHICLE GROSS LIFTOFF MASS (mg	ross_veh)	
Stage start propellant		
Strap-on start consumption		

Transfer to Trajectory

Program to Optimize Simulated Trajectories

- POST 3D
- FORTRAN 77 based developed at Langley
- Targets and optimizes point mass trajectories for powered/unpowered vehicle near arbitrary rotating, oblate planet
- Offers discrete parameter optimization capability

POST inputs from INTROS

- Target payload
- Gross Liftoff Mass/Stage dry masses
- Propellant load
- Reference areas
- Booster data
- Engine data
- Shroud/LAS mass
- Injected weight estimate

Additional inputs

- Initial position and orientation
- Wind profile
- Atmosphere model
- Gravity model

Trajectory Analysis

Constraints

- Determined by ground rules
- Acceleration
- Dynamic pressure
- Final orbit
- Free molecular heating rate: determines shroud drop

Outputs

- Optimized injected mass/payload
- Flight profile to reach desired orbit
- Vehicle orientation in orbit
- Final state vector of vehicle

POST Output

INTROS Model Revision

Data from performance run is fed into vehicle model

- Event timing with velocity
 - Booster burn/jettison
 - SRB overboard mass
 - Shroud jettison
 - Main Engine Cutoff and staging
 - Sub-orbital events
- Injected mass
- Total velocity change

Data used to resize stages

- Plus/minus propellant
- Plus/minus payload
- Propellant offload if stage fixed

Redundant calculations are performed

- Verifications
 - Engine power levels and throttle settings
 - Propellant flow rates and transient mass
 - Stage impulse
- Eliminates a lot of common errors and adds scrutiny

Transfer to Structural

Specific information is passed to the structural analyst

For LVA P	rogram	Input '	VEHICLE:		STAGE:							
		lgth	dia1	dia2		vol	area			mass	unit mass	
Description	shape	(in)	(in)	(in)	ecc	(ft^3)	(ft^2)	Mtl	Design	(lbm)	(lbm/x)	
interstage cyl	cyl		331.00									
interstage	cone		331.00	331.00								
Forward skirt	cyl		331.00									
LOX forward dome	hobsprd		331.00		0.661							
LOX cylinder	cyl		331.00									
LOX aft dome	hobsprd		331.00		0.661							
Intertank	cyl		331.00									
LH2 forward dome	hobsprd		331.00		0.661							
LH2 cylinder	cyl		331.00									
LH2 aft dome	hobsprd		331.00		0.661							
Aft compartment	cyl		331.00									
Aft skirt	cone		264.80	331.00								
							Thrust Structure					
		Oxid	Fuel1			Max Q (lbf/ft^2)			Max G (g's)			
Total tank volume (ft^3)						Airfoil	Mass	Frnt area	Total vac thrust			
Tank propellant (lbm)						Group	(lbm)	(ft^2)	No of engines			
Prop density (lbm/ft^3)									Engine length			
Ullage pressure (psia)									Total engine mass			
Oxidizer description		Liquid Oxygen		liftoff T/W					Payload & prov mass			
Fuel1 descript		Liquid Hydro	gen	SRB sl					Stage gross L/O mass			
			G	ross Liftoff					Stage burnout mass			
PBAN Trace		Total Book		ster Liftoff					Eng name			

Structural Analysis - LVA

- Standalone application for quick turnaround launch vehicle structural design and analysis
 - Provides itemized masses for primary structural elements
- Written at MSFC in Visual Basic
- Uses time proven engineering analysis methods
 - Material properties, load factors, aerodynamic loads, stress, elastic stability
 - Loads are run as single combined worst case
 - Also capable of analyzing event-specific loads
- Program designed to operate with minimum input
- LVA and predecessors serving NASA for over 26 years

LVA Output

- Itemized primary structure mass
 - Tanks, skirts, shroud, intertank, interstage, thrust structure
- Shear/bending moment/compression diagram

LVA Output / INTROS Revision

Scale depiction of concept

- Station numbering
- CG, CP, and concentrated masses
- Identifies interferences and illustrates margins

- LVA-determined masses are incorporated in INTROS
- For resizing purposes, new unit mass ratios are integrated

Closing the Loop

- Iterative trajectory runs are made until injected mass predictions and actuals close within 300 lbm
- If loads break boundaries another LVA iteration is required
- Final report is generated (baseball card)

Sensitivities Short List

Engine performance

- Power level, thrust, impulse, mass
- Cargo or crew
- Shroud variables
 - Geometry, material, jettison time, payload density
- Boosters
 - Propellant, trace, case material, size, thrust, attach point
- Structural materials & design
 - Composites integration, battleship construction, tank location, hammerhead
- Mass Growth Allowance
- Ullage
- Flight Propellant Reserve
- Trajectory
 - Insertions orbit/inclination
 - Aerodynamic load constraints
 - Throttle profiles/engine out

Conclusion

- ACO ETO Team provides unique capability for NASA and MSFC
- Supported every agency / center level vehicle study from ESAS (2005) forward
- Jacobs ESTS employees are integral to this team
- The covered process is very streamlined & efficient
- Continued value through exterior input
- Thanks!
- Questions?